WoodHeat: Increasing value of the forest-wood biomass

HIA Kick-off
December 11th, 2019, Helsinki
Virpi Leinonen, SFTec Oy

WoodHeat - Aim

- More efficient valorization of the woodforest industry (wood chips and bark) materials
- Increasing materials calorific value and bringing direct benefits to wood-based power plants as end-users of the production chain
 - Price of the material based on the caloric value (€/MWh)

Moisture content vs. caloric value

Wet bark

Value 600 €/truck load

Dried bark

Value up to 2200 €/truck load

CAPEX and OPEX of drying?

Forest fuel supply chains

Vipuvoimaa 2014-2020

Traditional forest fuel supply chain

Fresh wood storage

Chipping of naturally drier wood

Quality (10 - 12 GJ/ton)

Capital investment costs

Fast forest fuel supply chain

Chipping of fresh wood

Artificial drying of fresh

Fresh chips (50-55%)

Dried chips

- Small CHP

(10-30 %)

- Biochar

Naturally dried

chips

(35-40%)

Storage (< 25 %H2O)

Capital investment costs

Capital investment costs

The dry matter loss

Other valuable products

Bioheat in EU

The total EU's bioheat has increased by 70 % since 2000 to 2017

Impact of the different sectors on the final energy consumption of Bioheat in the EU28 Member States in 2017 (%).

Source: Eurostat

Bioheat in Finland

- 94.4% of renewable heat is due to bioheat
- In Finland over 500 bioheat production units in operation by over 300 entrepreneurs
 - 1/3 of these plants are district heating plants
 - 2/3 are property-specific facilities

Ref. J. Laurila, University of Helsinki (2013), ISSN 1795-7389; Motiva (www.motiva.fi)

FINLAND

Consortium

Consortium	SFTec	Biomega	LAPIN AMK
Role	Drying technology (Lead partner)	Wood forest materials and wood-based power plant	Research
Region	Northern Ostrobothnia	Northern Ostrobothnia	Lapland
Location	Oulu	Martinniemi, Haukipudas	Rovaniemi
Website	www.sftec.fi	www.biomega.fi	www.lapinamk.fi

MODHEAT® - ENABLING TECHNOLOGY

- Profitable drying:
 - CAPEX: Modular structure, cheap to produce with standard parts, effective supply chain
 - OPEX: Utilizing waste heats in drying, minimized downtime, easy to maintain
- ModHeat® enables cost efficient drying for low value and hard to handle materials

WHY MODHEAT®?

Efficiency for biomass

- -Belt dryer 0.9-1.4 kWh/kg (H_2O)
- -SFTec dryer 0,6-0,9 kWh/kg (H_2O) (LUKE 2019)

OPERATING PRINCIPLE

Lapland University of Applied Sciences

- The R&D partner
- Lapin AMK will provide the expertise in
 - The measurement's instrumentation for analyzing the piloting parameters
 - Full analysis of the economic feasibility of the overall WoodHeat process
- An independent evaluation of the results

Biomega Oy

- A project partner and enabler
- Provide the piloting facilities at Martinniemi, Haukipudas
- Provider of test materials and the waste heat

The WoodHeat pilot

WoodHeat project - Targets

- Build up of piloting facilities
 - Test waste heat utilisation
- Piloting of artificial drying ModHeat® technology
 - Energy efficiency (kWh/kg_{H2O})
 - Capacity (m³/h)
 - OPEX
- Technical and economic feasibility analysis of drying

